Search results

Search for "thermo-mechanical properties" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Advances in nanocarbon composite materials

  • Sharali Malik,
  • Arkady V. Krasheninnikov and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2018, 9, 20–21, doi:10.3762/bjnano.9.3

Graphical Abstract
  • newer areas of nanocarbon materials for use in biomedicine and diagnostics. Energy transfer materials are also well represented with articles and reviews covering aspects of engineering, thermo-mechanical properties, photovoltaics and Li-ion battery materials. Last but not least, we would like to thank
PDF
Editorial
Published 03 Jan 2018

Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

  • Naum Naveh,
  • Olga Shepelev and
  • Samuel Kenig

Beilstein J. Nanotechnol. 2017, 8, 1909–1918, doi:10.3762/bjnano.8.191

Graphical Abstract
  • epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better
  • -mechanical behavior. Keywords: composite; exfoliation; graphene; surface-active agents (SAAs); thermo-mechanical properties; Introduction Carbon nanotubes (CNTs) have been suggested as an efficient conductive filler because of the outstanding electrical properties and the high aspect ratio. CNT-modified
  • and at 120 °C for 2 h. Characterization The thermo-mechanical properties of the compositions were measured at 1 Hz according to ASTM D 4065 using a DMA-Dynamic Mechanical Analysis (Q800 TA Instruments). Flexural testing followed ASTM D790 (3 point bending) at 1.3 mm/min. Electrical resistivity, both
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2017

Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

  • Mostafa Mirzaei and
  • Yaser Kiani

Beilstein J. Nanotechnol. 2016, 7, 511–523, doi:10.3762/bjnano.7.45

Graphical Abstract
  • -mechanical properties, carbon nanotubes (CNTs) have attracted increasing attention in the past decades. CNTs are a promising candidate for the reinforcement of the matrix phase in a composite. Kwon et al. [1] reported that using a powder metallurgy fabrication process, carbon-nanotube-reinforced composites
  • significantly less research on plates with cutouts in comparison to those without cut-out. Depending on the application, homogeneous isotropic, composite or functionally graded plates may be perforated to fulfill a desired application. Representing a type of novel material with fascinating electro-thermo
PDF
Album
Full Research Paper
Published 07 Apr 2016
Other Beilstein-Institut Open Science Activities